Modular development of the teleost trunk along the dorsoventral axis and zic1/zic4 as selector genes in the dorsal module.
نویسندگان
چکیده
Teleost fish exhibit remarkable diversity in morphology, such as fins and coloration, particularly on the dorsal side. These structures are evolutionary adaptive because their back is highly visible to other individuals. However, owing to the late phenotypic appearance (from larva to adult) and lack of appropriate mutants, the genetic mechanisms that regulate these dorsoventrally asymmetric external patterns are largely unknown. To address this, we have analyzed the spontaneous medaka mutant Double anal fin (Da), which exhibits a mirror-image duplication of the ventral half across the lateral midline from larva to adult. Da is an enhancer mutant for zic1 and zic4 in which their expression in dorsal somites is lost. We show that the dorsoventral polarity in Da somites is lost and then demonstrate using transplantation techniques that somites and their derived tissues globally determine the multiple dorsal-specific characteristics of the body (fin morphology and pigmentation) from embryo to adult. Intriguingly, the zic1/zic4 expression in the wild type persists throughout life in the dorsal parts of somite derivatives, i.e. the myotome, dermis and vertebrae, forming a broad dorsal domain in the trunk. Comparative analysis further implies a central role for zic1/zic4 in morphological diversification of the teleost body. Taken together, we propose that the teleost trunk consists of dorsal/ventral developmental modules and that zic1/zic4 in somites function as selector genes in the dorsal module to regulate multiple dorsal morphologies.
منابع مشابه
Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant)
Double anal fin (Da) is a spontaneous medaka mutant that exhibits an unique ventralizing phenotype, a mirror-image duplication across the lateral midline in the dorsal trunk-tail region. In the mutant, early D-V specification appears normal but the altered phenotype becomes evident during late embryogenesis. In this study, we genetically specified the mutation to a 174-kb region harboring two z...
متن کاملThe Medaka zic1/zic4 Mutant Provides Molecular Insights into Teleost Caudal Fin Evolution
Teleosts have an asymmetrical caudal fin skeleton formed by the upward bending of the caudal-most portion of the body axis, the ural region. This homocercal type of caudal fin ensures powerful and complex locomotion and is regarded as one of the most important innovations for teleosts during adaptive radiation in an aquatic environment. However, the mechanisms that create asymmetric caudal fin ...
متن کاملMultiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis.
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the develo...
متن کاملTemporal regulation of apterous activity during development of the Drosophila wing.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of ...
متن کاملWing development and specification of dorsal cell fates in the absence of apterous in Drosophila
The development and patterning of the Drosophila wing relies on interactions between cell populations that have the anteroposterior (AP) axis and dorsoventral (DV) axis of the wing imaginal disc as frames of reference [1-3]. Each of these cell populations gives rise to a compartment - a group of cells that have their fates restricted by cell lineage - within which cells acquire specific identit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 7 شماره
صفحات -
تاریخ انتشار 2013